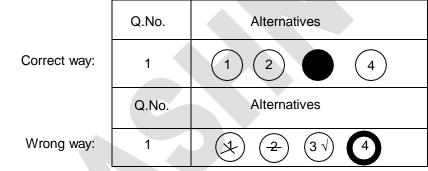
NTSE STAGE-I (2018) (For Class X Students) (MAT)

Time: 120 Minutes


Max Marks: 100

INSTRUCTIONS TO CANDIDATES

Read the following instructions carefully before you open the Question Booklet.

- 1. Use blue/black ball point pen only.
- 2. Write your Roll No. very clearly (only one digit in on block) on this booklet and on the **ANSWER SHEET**.
- 3. This test consists of 100 questions of one mark each. All the questions are COMPULSORY.
- 4. Answer to each question by darkening the correct alternative among the four choices on the **ANSWER SHEET**.

Example:

5. Separate sheet has been provided for rough work in this test booklet.

1. 4 By observation x should be 5 $5 + \frac{25}{5} = 10$ $\therefore 5^2 + \frac{50}{5^2} = 25 + 2 = 27$ 2. 1 x + y = 3 $x^2 + y^2 = 15$ we know that $(x + y)^2 = x^2 + y^2 + 2xy$ (3)² = 15 + 2xy 9 - 15 = 2xy-6 = 2xyNow, $(x - y)^2 = (x + y)^2 - 4(xy)$ $= (3)^2 - 2(-6)$ = 9 + 12 = 21 3. 2 Let $\frac{a}{3} = \frac{b}{5} = \frac{c}{7} = 105$ ∴ a = 315, b = 525, c = 735 $=\frac{315 + 525 + 735}{3}$ 525 4. 3 $(x + y)^2 = x^2 + y^2 + 2xy$ $(25)^2 = 425 + 2xy$ 2xy = 625 - 425 = 200xy = 100 5. 1 $\frac{0.64}{a^2} = 64$ 0.64 $= a^2$ 64 64 = a² 6400 1 = a 100 = a = 0.1 10 2 6. Quotent = 20 Divisor = $20 \times 30 = 600$ Remainder = $600 \div 4 = 150$ Divident = 600 × 20 × 20 + 150 = 12150

8.

9.

4 $3^{a-2b} = 27$ $3^{a-2b} = 3^3$ a - 2b = 3.....(i) [If $a^m = a^n$ then m = n] $9^{a+b} = 3$ $3^{2a+2b} = 3$ 2a + 2b = 1(ii) Adding eq. (i) and (ii) a - 2b + 2a + 2b = 43a = 4 4 a = [Put the value of a in equation (i)] 3 $\frac{4}{3} - 2b = 3$ $\frac{4}{3} - \frac{3}{1} = 2b$ $\frac{4-9}{3} = 2b = -\frac{5}{6} = b$ Now, $-\frac{a}{b} = -\frac{\frac{4}{3}}{-\frac{5}{2}} = \frac{4}{3} \times \frac{6}{5} = \frac{8}{5}$ 4 $\sqrt{17 + x\sqrt{11}} = \sqrt{1 + 6}$ S.B.S. (squaring both sides) $17 + x\sqrt{11} = 11 + 6 + 2\sqrt{66}$ $17 + x\sqrt{11} = 17 + 2\sqrt{66}$ $x\sqrt{11} = 2\sqrt{66}$ $x = 2\sqrt{\frac{66}{11}} = 2\sqrt{6}$ $x^2 = 24$ 1 $\sqrt{0.02 \times 0.2 \times a} = 0.2 \times 0.2 \sqrt{b}$ $\sqrt{\frac{2 \times 2}{100} \times \frac{2}{10} \times a} = \frac{2}{10} \times \frac{2}{10} \times \sqrt{b}$ $\frac{2}{10}\sqrt{\frac{a}{10}} = \frac{2}{10} \frac{2}{10} \frac{2}{10} \sqrt{b}$ $\sqrt{\frac{a}{10}} = \frac{2}{10} \sqrt{b}$ $\frac{\sqrt{a}}{\sqrt{10}} = \frac{2 \times \sqrt{b}}{10}$ $\frac{\sqrt{a}}{\sqrt{b}} = \frac{2\sqrt{0}}{10}$ $\sqrt{\frac{a}{b}} = \sqrt{\frac{40}{100}}$ $\frac{a}{b} = 0.4$

1

2

Sum of roots = $7 - \sqrt{3} + 7 + \sqrt{3} = 14$ Product of roots = $(7 - \sqrt{3})(7 + \sqrt{3}) = 49 - 3 = 46$ Quadratic equation kx² – (sum of roots)x + product of roots = 0 x² - 14x + 46 = 0

11.

In a triangle PQR $\angle Q = 3\angle R = 2(\angle P + \angle R)$ We know that sum of angles of a triangle is 180° $\angle P + \angle Q + \angle R = 180^{\circ}$ $(\angle P + \angle R) + \angle Q = 180^{\circ}$ $\frac{3}{2}\angle R + 3\angle R = 180^{\circ}$ $9\angle R = 180^{\circ} \times 2$ $\angle R = \frac{180 \times 2}{9} = 40^{\circ}$ Then $\angle Q = 3\angle R$ $= 3 \times 40 = 120^{\circ}$

12.

2

 $\underline{p} = \underline{x+3}$ $\overline{q} = \overline{x-3}$ Appling components and Dividends $p+q_x+3+x-3$ $\overline{p-q} = \overline{x+3-x+3}$ $p+q_2x$ p-q 6 $\frac{p+q}{p-q} = \frac{x}{3}$ Again applying components and Dividends p+q+p-q _ x+3p+q-p+q x-3 $2p_x + 3$ 2q x -3 Squaring both sides $\frac{p^2}{q^2} = \frac{x^2 + 6x + 9}{x^2 - 6x + 9}$ $p^2 + q^2 _ x^2 + 6x + 9 + x^2 - 6x + 9$ $\overline{p^2 - q^2} = \overline{x^2 + 6x + 9 - x^2 + 6x - 9}$ Applying components and Dividends $\frac{p^2+q^2}{p^2-q^2}=\frac{2x^2+18}{12x}=\frac{2(x^2+9)}{12x}$ Now, $\frac{p^2 - q^2}{p^2 + q^2} = \frac{6x}{x^2 + 9}$

13. 1 Perimeter of a square = 2(24 + 12) = 72'72 __= 18 Side of square = Area of square = $18 \times 18 = 324$ 14. 1 1 $\pi(1)^2 \times h$ <u>3</u> 1 2 3 $\pi(2)^2 \times H$ $\frac{\frac{1}{3}\pi(2)^{2} \times H}{\frac{h}{H} = \frac{8}{3} = 8:3$ 15. 3 x = 3y - 3x - 2y - 6∴ x = 24 y = 9 x + y = 24 + 9 = 3316. 1 Let two numbers are x and y According to question (x - y) : (x + y) : xy1 : 7 : 24 $(x - y)^2 = (x + y)^2 - 4xy$ $(1a)^2 = (7a)^2 - 4(24a)$ $a^2 = 49a^2 - 96a$ $48a^2 - 96a = 0$ 48a(a - 2) = 0a = 2 So product of the two numbers is $24 \times 2 = 48$. 17. 1 Arrange the given observations in ascending order 6, 7, 7, 7, 9, 9, 14, 15 Mode = 7Range = $15_{8}6 = 9$ term $+ \begin{pmatrix} 8 \\ 2 \end{pmatrix} + 1$ term 2 Median = 2 $=\frac{7+9}{2}=8$ Now mean = median + mode + Range 3 $=\frac{8+7+9}{3}=\frac{24}{3}=8$

Let income 300 Expenditure = 80% of 300 = 240 Income = $300 + 16\frac{2}{\%}$ of 300 = 350Expenditure = $240 + 37\frac{1}{2}$ % of 240 = 330Saving = $\frac{20}{350} \times 100 = 5\frac{5}{9}\frac{\%}{7}$

19.

3

2

Let cost of table = x Cost of chair = y 5x + 5y = 3110 x - y = 210 x = 520 y = 3102x + 2y = 2(520 + 310) = 1660

20.

$$5 = a + \frac{1}{1 + \frac{1}{6 + \frac{1}{2}}}$$

$$5 = a + \frac{1}{1 + \frac{13}{2}}$$

$$5 = a + \frac{1}{1 + \frac{2}{13}}$$

$$5 = a + \frac{1}{\frac{15}{13}}$$

$$5 = a + \frac{1}{\frac{15}{13}}$$

$$5 = a + \frac{13}{15}$$

$$a = \frac{62}{15}$$

21.

4 Let the number $8 \times 7 = 56$ $56 \times \frac{7}{8} - 56 \times \frac{5}{7} = 9$ If difference is 9, then number = $\frac{56}{56 \times 5} = \frac{280}{9}$ If difference is 5, then number = $\frac{56 \times 5}{9} = \frac{280}{9}$

$$\therefore 9 \times \frac{280}{9} = 280$$

2

22. 3
Height of cone (h) = 24 cm
Base of cone (h) = 6 cm
Volume of sphere = volume of cone

$$\frac{4}{3}\pi R^3 - \frac{1}{3}\pi^2 h$$

 $R^2 - \frac{6}{4} - \frac{6}{4} + \frac{24}{4}$
 $R = 6$ cm
 $\frac{1}{3}\pi x 6^2 \times 24 = \frac{4}{3}\pi r^4$
 $r = 6$
 $\therefore 4\pi r^2 = 144\pi$ sq. cm
23. 4
Let total work 60 unit
(LCM of 10. 12. 15)
Work done by P + Q = $\frac{60}{10} = 4$ unit/day
Work done by P + Q = $\frac{60}{10} = 4$ unit/day
Work done by P + Q = $\frac{60}{2} = 3$ unit/day
Work done by P + Q + $R = \frac{6}{20} - 3$ unit/day
Work done by P + Q + $R = \frac{6}{20} - 3$ unit/day
Work done by R + D = $\frac{60}{2} - 3$ unit/day
Work done by R = $\frac{13}{3} - 6 = \frac{1}{2}$ unit/day
Time taken by R alone = $60 \div \frac{1}{2} = 120$ days
24. 3
 $\sqrt{3}\sqrt{3}\sqrt{2}\sqrt{2}\sqrt{3}\sqrt{4}$
 $(\sqrt{3})^6 (\sqrt{2})^6 (\sqrt{3})^6 (\sqrt{3}\sqrt{4})^6$
 $27. 4, 8, 16$
 $\therefore \sqrt{2}$ is smallest
25. 4
By options
 $8 R R P P 8 S 0 0 8 = 57$
 $8 \times 8 + 8 \cdot 8 - 8 = 57$
26. 4
Quantity of milk = $60 \times \left(1 - \frac{12}{60}\right)^2$
 $60 \times \frac{16}{25} = 38.4$
27. 4
 $15 \times 3 + 1 = 46$
 $12 \times 3 + 1 = 25$
 \therefore 33 is different

28. 3 20th from left 15th students from right 19th students В 16th from right from left By observation A's final position from left = 30 A's final position from right = 16 Total boys = 30 + 16 - 1 = 4529. 1 Number of small cubes on each edges = $\frac{15}{3} = 5$ Small cubes have only one face = $6(5-2)^2 = 54$ 30. 2 Let present age of son = x yrs Age of father when his son born = 3x yrs Now, present age of father = (3x + x) yrs 4x = 48x = 12 4 yrs ago age of boy is (12 - 4) yrs i.e., 8 yrs 31. 2 56 120 2 30 90 +10 +18 +26 +42 +34[: 120 should be replaced with 132] Or $2^2 - 2 = 2$ $4^2 - 4 = 12$ $6^2 - 6 = 30$ $8^2 - 8 = 56$ $10^2 - 10 = 90$ $12^2 - 12 = 132$ 32. 4 10 100 200 310 430 +90 +100 +110 +120 33. 4 .5 12.5 +2.5 +3.5 +4.5 +5.5 34. 10928 35. 4 24?1116 3 7 ? 21 31 Number are 2, 4, ?, 11, 16 Pattern +2, +3, +4, +5 So answer is 7 Denominator's are 3, 7, ?, 21, 31 Pattern +4, +6, +8, +10 So, answer is 13

36. 3 Total apples in a basket = 12 x 12 = 144 [1 dozen = 12 things] Two dozen are added, Now, total apples = $144 \times 24 = 168$ Ten apples spoil and are removed Now, remaining apples are 168 - 10 = 158Remaining apples are transferred equally into two baskets Then each basket have $\frac{158}{2} = 79$ 37. 2 Time between 8 and 9 will the hands of a clock be together is $(8 \times 30) \times \frac{2}{11}$ min past 8 o'clock i.e., $\frac{480}{11}$ min past 8 o'clock [between h to (h + 1) hours \rightarrow hand of a clock will be together] [: 30h x $\frac{2}{11}$ min past h hour] $43\frac{7}{11}$ min past 8 o'clock 38. Δ 9 Α 12 В 10 7 8 С 11 Sum of each column, each row and diagonal is same So, sum of diagonal = 9 + 10 + 11 = 30Hence, 9 + 8 + B = 30B = 13and 9 + A + 12 = 30A = 98 + C + 11 = 30C = 11 39. $\frac{7^{n+3}+14\times7^{n+4}}{7^{n+3}}$ $7^{n+3}(1+14 \times 7')$ **7**n+3 = 1 + 98 = 9940. 1 $\tan x = 5 - \sqrt{3}$ $\cot x = \frac{1}{\tan x} = \frac{1}{5 - \sqrt{3}} \times \frac{5 + \sqrt{3}}{5 + \sqrt{3}}$ $=\frac{5+\sqrt{3}}{(5)^2-(\sqrt{3})^2}=\frac{5+\sqrt{3}}{22}$ Now, 22 tan $(90 - x) = 22 \times \cot x$ $=22 \times \frac{5 + \sqrt{3}}{22} = (5 + 3)^{-1}$

4

$$a = \frac{1}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}} = \frac{2 + 3\sqrt{3}}{1}$$

Now, $a^2 = (2 + \sqrt{3})^2 = (2)^2 + (\sqrt{3})^2 + 2(2)(\sqrt{3})^2$

$$= 4 + 3 + 4\sqrt{3}$$

$$b = \frac{1}{2 + \sqrt{3}} \times \frac{2 - \sqrt{3}}{2 - \sqrt{3}} = \frac{2 - \sqrt{3}}{1}$$

and, $b^2 = (2 - \sqrt{3})^2 = (2)^2 + (\sqrt{3})^2 - 2(2)(\sqrt{3})^2$

$$= 4 + 3 - 4\sqrt{3}$$

$$= 7 - 4\sqrt{3}$$

$$7a^2 + 11ab = 7b^2$$

$$= 7a^2 - 7b^2 + 11ab$$

$$= 7(a^2 - b^2) + 11ab$$

$$= 7(8\sqrt{3}) + 11(1)$$

$$= 56\sqrt{3} + 11$$

1

Let total capacity of the tank (LCM of 12, 15 and 10) = 60 litres A can fill a tank in 12 minutes i.e., In 1 minute A can fill = 5 litre B can fill a tank in 15 minutes i.e., In 1 minute B can fill = 4 litre C can empty a tank in 10 minutes i.e., in 1 minute C can empty = 6 litre If all pipes are opened simultaneously then A, B and C fill (in 1 minute) = (5 + 4 - 6) litre Now If all pipes are opened simultaneously then in 60 = 20 minutes

1

they fill the tank.

Principle = Rs. P Rate = 3% p.a Time = t years Simple interest = P $\times \frac{3t}{100}$ Amount = P + $\frac{P \times 3t}{100}$ P + $\frac{3Pt}{100}$ = 800 P $\left(1 + \frac{3t}{100}\right)$ = 100(i) Dividing eq. (ii) by (i) P $\left(1 + \frac{5t00}{100}\right)$ = 800 Q $\left(1 + \frac{5t00}{100}\right)$ = 800 P $\left(1 + \frac{3t}{100}\right)$ = 800 $\begin{array}{l} \mbox{Principle} = \mbox{Rs. P} \\ \mbox{Rate} = 5\% \mbox{ p.a.} \\ \mbox{Time} = t \mbox{ year} \\ \mbox{Simple interest} = \mbox{P} \times \frac{5t}{100} \\ \mbox{Amount} = \mbox{P} \times \frac{5\text{Pt}}{100} \\ \mbox{P} + \frac{5\text{Pt}}{100} = 1000 \\ \mbox{P} \left(1 + \frac{5t}{100}\right) = 1000 \quad \dots \dots (ii) \end{array}$

$$4 + \frac{20t}{100} = 5 + \frac{15t}{100}$$
$$\frac{20t}{100} - \frac{15t}{100} = \frac{5t}{100} = 1$$
$$t = 20 \text{ years}$$
Now,
$$P_{|} 1 + \frac{3 \times 20}{100} = 800$$
$$P_{|} \left(\frac{8}{5}\right) = 800$$
$$P = \frac{800 \times 5}{8}$$
$$P = \text{Rs. } 500$$

1

 $x^{2}-2x-1 = 0$ If a and b are roots of $x^{2}-2x-1 = 0$ In the quadratic equation $ax^{2} + bx + c = 0$ Then sum of roots (a + b) = -(-2) = 2[\therefore sum of roots $= \frac{\text{coeff. of } x_{1}}{\text{coeff. of } x^{2}}$ and product of roots ab = -1[\therefore product of roots $= \frac{\text{constant term}}{\text{coeff. of } x^{2}}$] Now $a^{2}b + ab^{2} = ab(a + b)$ = (-1)(2) = -2

45.

3

 $k = \frac{20}{100} \times \frac{60}{100} \times 100000$ k = 12,000

46.

 $\frac{1}{5} \times \frac{60}{100} \times 100000$ = 3000

47. 3

 $\frac{15}{100} \times \frac{60}{100} \times 100000$ = 9000

48. 2

 $WB = \frac{60}{100} \times \frac{20}{100} \times 100000$ = 12,000 $M = \frac{5}{100} \times \frac{20}{100} \times 100000$ = 10000 Ratio = 12000 : 1000 = 12 : 1 49. 3 WB = $\frac{20}{100} \times \frac{20}{100} \times 100000$

 $N = \frac{5 \times 20}{100 \times 100}$ $N = \frac{5 \times 20}{100 \times 100} \times 100000$ = 1000Difference = 4000 - 1000 = 3000

50.

2 The number of ways in which 6 students can be seated at a round table is (6 - 1)! = 51 $5 \times 4 \times 3 \times 2 \times 1 = 120$ ways

51.

ABCDEFG ZYXWUVT BCDEF YXWVU CDE XWV W D The above pattern should be followed. Therefore incorrect question.

52. 3 R > P > S > Q > T

.

53. 3

As 6^{th} to the left of 19^{th} from the left end is W

54. *****

No such consonants are there. All option are incorrect.

55.

7 M 4 P J V 1 8 3 E W 2 Q 16 T A 8 Z 15 F U 9 H N

Solutions (Q. 56 to 60):

2

Days	Name of Person	Perform in Stage shows
Monday	D	Speech
Tuesday	A	Monologue
Wednesday	F	Dance
Thursday	В	Play
Friday	G	Mimicry
Saturday	С	Debate
Sunday	E	Music

56.

57. 4

2

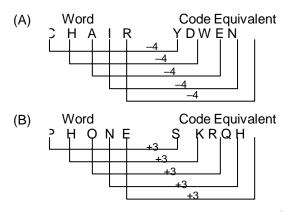
- 58. 1
- 59.
- 60. 4

Solutions (Q. 61 to 63):

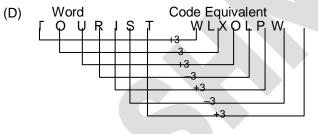
61. 3

By observation

By observation


63. 2

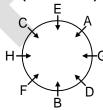
By observation


64. 2

By observation

Solutions (Q. 65 to 67):

(C) $\Gamma ROUPE \longrightarrow GILFKV$ Each letter in the word is replaced by the letter which occupies the same position f rom the other end of the alphabet to obtain the code.


- 65. 2 By observation
- 66. 1 By observation

*

67.

 $QLFIMZQ \rightarrow last Q$ replaced by O. Question incorrect

Solutions (Q. 68 to 70):

68.

2

NTSE-STAGE-I-(2018)_SOLUTIONS-MAT-13

69.	1
70.	4
71.	★ All option are incorrect
72.	4 BHAGAT, BHAGIRATH, BHAGWAN, BHAGWAT
73.	1 As M is the father of S and P is the daughter of S So, P is the grand daughter of M.
74.	3 Z = 26 × 2 = 52 ACT = 1 + 3 + 20 = 24 × 1 ∴ BAT = 2 + 1 + 20 = 23 × 2 = 46
75.	3 20 × 3 = 60 × 3 = 180 4 × 5 = 20 × 5 = 100 7 × 7 = 49 × 7 = 343
76.	$ \begin{array}{c} 4 \\ 1 \leftrightarrow 5 \\ 2 \leftrightarrow 6 \\ 3 \leftrightarrow 4 \end{array} $
77.	* There are 15 straight lines. All option are incorrect.
78.	1 By observation
79.	3 By observation
80.	4 KILOMETER after replacement Word \rightarrow EEILNMOSU
81.	1 By observation
82.	2 By observation
83.	* All option are incorrect.
84.	2 $I \rightarrow 4 \times 2 \times 3 = 24 - 4 = 20$ $II \rightarrow 5 \times 4 \times 2 = 40 - 12 = 28$ $III \rightarrow 3 \times 2 \times 4 = 24 - 4 = 20$ Total = 20 + 28 + 20 = 68

85.	2 We have total number of squares = $8^2 + 7^2 + 6^2 + 5^2 + 4^2 + 3^2 + 2^2 + 1^2$ = $64 + 49 + 36 + 25 + 16 + 9 + 4 + 1$ = 204
86.	 ★ All option are incorrect.
87.	4 By observation
88.	4 By observation
89.	2 By observation
90.	1 By observation
91.	2 By observation
92.	* All option are incorrect.
93.	4 By observation
94.	* All option are incorrect.
95.	3 By observation
96.	 ★ All option are incorrect.
97.	4 By observation
98.	1 By observation
99.	2 By observation
100.	4 By observation

	ANSWER KEY												
	1.	4	2.	1	3.	2	4.	3					
	5.	1	6.	2	7.	4	8.	4					
	9.	1	10.	1	11.	2	12.	2					
	13.	1	14.	1	15.	3	16.	1					
	17.	1	18.	4	19.	3	20.	2					
	21.	4	22.	3	23.	4	24.	3					
	25.	4	26.	4	27.	4	28.	3					
	29.	1	30.	2	31.	2	32.	4					
	33.	4	34.	4	35.	4	36.	3					
	37.	2	38.	4	39.	3	40.	1					
	41.	4	42.	1	43.	1	44.	1					
	45.	3	46.	1	47.	3	48.	2					
	49.	3	50.	2	51.	*	52.	3					
	53.	3	54.	*	55.	2	56.	2					
	57.	4	58.	1	59.	4	60.	4					
	61.	3	62.	1	63.	2	64.	2					
	65.	2	66.	1	67.	*	68.	2					
	69.	1	70.	4	71.	*	72.	4					
	73.	1	74.	3	75.	3	76.	4					
	77.	*	78.	1	79.	3	80.	4					
	81.	1	82.	2	83.	*	84.	2					
	85.	2	86.	*	87.	4	88.	4					
	89.	2	90.	1	91.	2	92.	*					
	93.	4	94.	*	95.	3	96.	*					
*	97.	4	98.	1	99.	2	100.	4					